Weak and strong wall boundary procedures and convergence to steady-state of the Navier-Stokes equations

نویسندگان

  • Jan Nordström
  • Sofia Eriksson
  • Peter Eliasson
چکیده

We study the influence of different implementations of no-slip solid wall boundary conditions on the convergence to steady-state of the Navier-Stokes equations. The various approaches are investigated using the energy method and an eigenvalue analysis. It is shown that the weak implementation is superior and enhances the convergence to steady-state for coarse meshes. It is also demonstrated that all the stable approaches produce the same convergence rate as the mesh size goes to zero. The numerical results obtained by using a fully nonlinear finite volume solver support the theoretical findings from the linear analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow Field Characteristics of an Aerospike Nozzle Using Different Turbulence Models

To improve the calculation of the flow properties of an aerospike nozzle, different turbulence models were investigated in this study. The primary shape of the nozzle plug is determined through utilizing an approximate method. The flow field is, then, simulated using the Navier-Stokes equations for compressible flows. The commercial computational fluid dynamics code Fluent is used to simulate t...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

A Study of the Navier-stokes Equations with the Kinematic and Navier Boundary Conditions

Abstract. We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a domain in R with compact and smooth boundary, subject to the kinematic and Navier boundary conditions. We first reformulate the Navier boundary condition in terms of the vorticity, which is motivated by the Hodge theory on manifolds with boundary from the viewpoint of differential...

متن کامل

Meshless Local Petrov-Galerkin Method– Steady, Non-Isothermal Fluid Flow Applications

 Abstract : The meshless local Petrov-Galerkin method with unity as the weighting function has been applied to the solution of the Navier-Stokes and energy equations. The Navier-Stokes equations in terms of the stream function and vorticity formulation together with the energy equation are solved for a driven cavity flow for moderate Reynolds numbers using different point distributions. The L2-...

متن کامل

Asymptotic Regularity Conditions for the Strong Convergence towards Weak Limit Sets and Weak Attractors of the 3d Navier-stokes Equations

The asymptotic behavior of solutions of the three-dimensional Navier-Stokes equations is considered on bounded smooth domains with no-slip boundary conditions and on periodic domains. Asymptotic regularity conditions are presented to ensure that the convergence of a Leray-Hopf weak solution to its weak ω-limit set (weak in the sense of the weak topology of the space H of square-integrable diver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012